來源:網絡資源 2022-04-23 16:56:15
1 二次函數(shù)定義
定義:一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。
2二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);
頂點式:y=a(x-h)^2+k(拋物線的頂點P(h,k));
3二次函數(shù)的圖像與性質
1二次函數(shù)的圖像是一條拋物線。
2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
3二次項系數(shù)a決定拋物線的開口方向。
當a>0時,拋物線向上開口;
當a<0時,拋物線向下開口。
4一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5拋物線與x軸交點個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點;
Δ=b^2-4ac=0時,拋物線與x軸有1個交點;
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。
4二次函數(shù)拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線 x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P ( -b/2a ,(4ac-b^2)/4a )當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
相關推薦:
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2022年中考!
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看